A multivariate view of random bucket digital search trees

نویسندگان

  • Friedrich Hubalek
  • Hsien-Kuei Hwang
  • William Lew
  • Hosam M. Mahmoud
  • Helmut Prodinger
چکیده

We take a multivariate view of digital search trees by studying the number of nodes of different types that may coexist in a bucket digital search tree as it grows under an arbitrary memory management system. We obtain the mean of each type of node, as well as the entire covariance matrix between types, whereupon weak laws of large numbers follow from the orders of magnitude (the norming constants include oscillating functions). The result can be easily interpreted for practical systems like paging, heaps and UNIX’s buddy system. The covariance results call for developing a Mellin convolution method, where convoluted numerical sequences are handled by convolutions of their Mellin transforms. Furthermore, we use a method of moments to show that the distribution is asymptotically normal. The method of proof is of some generality and is applicable to other parameters like path length and size in random tries and Patricia tries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P´olya Urn Models and Connections to Random Trees: A Review

This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...

متن کامل

The Wiener Index of Random Digital Trees

The Wiener index has been studied for simply generated random trees, non-plane unlabeled random trees and a huge subclass of random grid trees containing random binary search trees, random medianof-(2k+ 1) search trees, random m-ary search trees, random quadtrees, random simplex trees, etc. An important class of random grid trees for which the Wiener index was not studied so far are random digi...

متن کامل

The eccentric connectivity index of bucket recursive trees

If $G$ is a connected graph with vertex set $V$, then the eccentric connectivity index of $G$, $xi^c(G)$, is defined as $sum_{vin V(G)}deg(v)ecc(v)$ where $deg(v)$ is the degree of a vertex $v$ and $ecc(v)$ is its eccentricity. In this paper we show some convergence in probability and an asymptotic normality based on this index in random bucket recursive trees.

متن کامل

The Subtree Size Profile of Bucket Recursive Trees

Kazemi (2014) introduced a new version of bucket recursive trees as another generalization of recursive trees where buckets have variable capacities. In this paper, we get the $p$-th factorial moments of the random variable $S_{n,1}$ which counts the number of subtrees size-1 profile (leaves) and show a phase change of this random variable. These can be obtained by solving a first order partial...

متن کامل

Probabilistic analysis of the asymmetric digital search trees

In this paper, by applying three functional operators the previous results on the (Poisson) variance of the external profile in digital search trees will be improved. We study the profile built over $n$ binary strings generated by a memoryless source with unequal probabilities of symbols and use a combinatorial approach for studying the Poissonized variance, since the probability distribution o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Algorithms

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2002